摘要
為解決內河排水動力不足、建設用地困難等問題,結構緊湊、占地面積小的一體化閘門泵受到廣泛關注,其中較大口徑的一體化泵閘在國內應用時間較短、實例較少。以鹽河泵閘工程為背景,采用三維參數化計算模型,進行門葉厚度、板厚度等參數設計優化分析,以及穿墻管、腹板薄弱處的加固分析;同時針對閘門泵振動、防腐等關鍵問題進行了分析論證。研究得出,門葉厚度不宜增加過大,應同時對區隔較大的面板、腹板結構進行適當加固,以控制共振頻域;當閘門寬高比小于0.6且泵外徑與閘門寬之比接近0.5時,宜采用12~16 mm范圍內的板厚組合;穿墻管加固應橫、縱、斜肋同時考慮;通過動態模擬分析,鹽河泵閘設計能夠避免一體化泵閘發生共振,且有一定的安全余量。
Abstract
By solving the problems such as the shortage of drainage power in inland rivers and the difficulty of construction land, the integrated gate pump with compact structure and small floor area has received much attention. Among them, the integrated gate pump with larger diameter has a short application time and few examples in China. This paper takes the Salt River Pump Gate Project as the background, uses the three-dimensional parametric calculation model, carries on the design optimization analysis of the door blade thickness, the plate thickness and other parameters, and the reinforcement analysis of the weak parts of the wall pipe and web. At the same time, the key problems such as vibration and anticorrosion of the gate pump are analyzed and demonstrated. The results show that the thickness of the door blade should not increase too much, and the panel and web structure with large separation should be properly strengthened at the same time to control the resonance frequency domain. When the ratio of gate width to height is less than 0.6 and the ratio of the pump outer diameter to gate width is close to 0.5, the plate thickness combination in the range of 12~16 mm should be used. Transverse, longitudinal and diagonal ribs should be considered at the same time for wall pipe reinforcement. Through a dynamic simulation analysis, the design of Salt River Pump Gate can avoid the resonance of the integrated pump gate, and has a certain safety margin.
關鍵詞
一體化閘門泵 / 優化設計 / 穿墻管 / 抗振效果 / 防腐
Key words
integrated gate pump / optimal design / wear wall tube / anti-vibration effect / corrosion protection
基金
引用本文
1 一體化泵閘設計及模型
1.1 鹽河泵閘工程概況
1.2 計算模型
表1 一體化泵閘模型材料參數列表Tab.1 Material parameter list of integrated pump brake model |
部位 | 彈性模量/ (N·m-2) | 密度/ (kg·m-3) | 泊松比 | 抗拉強度/MPa |
---|---|---|---|---|
門體 | 0.207 | 7 850 | 0.288 | 255 |
泵體 | 0.206 | 1 010 | 0.300 | / |
2 設計參數敏感性分析
2.1 門葉厚度影響分析
2.2 板結構厚度影響分析
2.3 穿墻管加固分析
圖6 不同穿墻管加固方案對應振動頻率與模態變化規律曲線圖Fig.6 Curve of vibration frequency and modal change law corresponding to different wall pipe reinforcement schemes |
2.4 腹板結構加固分析
2.4.1 邊梁腹板結構加固
圖8 不同邊梁腹板加固方案對應振動頻率與模態變化規律曲線圖Fig.8 Curve of vibration frequency and modal variation law corresponding to different side beam web reinforcement schemes |
表2 不同邊梁腹板加固方案產生共振時對應最大振幅列表Tab.2 List of the maximum amplitudes corresponding to theresonance generated by different side beam web reinforcement schemes |
方案 | 最大振幅/mm | ||
---|---|---|---|
5階模態 | 6階模態 | 7階模態 | |
無肋 | 0.823 | 1.745 | 0.691 |
單肋 | 0.686 | 0.510 | 0.153 |
雙肋 | 0.067 | 0.145 | 0.245 |
2.4.2 主梁腹板結構加固
表3 不同主梁腹板加固方案產生共振時對應最大振幅列表Tab.3 List of the maximum amplitudes corresponding to theresonance generated by different main beam web reinforcement schemes |
方案 | 最大振幅/mm | |
---|---|---|
10階模態 | 11階模態 | |
無肋 | 0.471 | 0.999 |
單側角肋 | 0.431 | 1.014 |
雙側角肋 | 0.401 | 0.983 |
單側通長肋 | 0.132 | 0.165 |
雙側通長肋 | 0.128 | 0.165 |
3 一體化泵閘抗振效果分析
表 4 一體化泵閘特征頻率模態成果對比表Tab.4 Comparison table of characteristic frequency modal results of integrated pump gate |
特征頻率模態 | 振型頻率/Hz | |||||
---|---|---|---|---|---|---|
一階 | 二階 | 三階 | 四階 | 五階 | 六階 | |
閘門泵自振頻率 | 4.31 | 13.99 | 16.63 | 62.91 | 122.12 | 137.38 |
閘門泵運行時(固液耦合)——強迫振動頻率 | 11.65 | 24.38 | 43.2 | 90.98 | 95.17 | 103.58 |
絕對誤差 | 7.34 | 10.39 | 26.57 | 28.07 | 26.95 | 30.80 |
相對誤差/% | 170.3 | 74.3 | 159.8 | 44.6 | 22.1 | 24.6 |
4 一體化泵閘防腐性能分析
4.1 主泵防腐蝕措施
4.2 鋼閘門及埋件防腐蝕措施
5 結 語
1 |
徐振東,杜麗惠,才君眉. 平面閘門流固耦合自振特性研究[J].水力發電,2001(4):39-43+67.
|
2 |
姚磊.淺談智能一體化閘門在大型灌區中的應用[J].農業開發與裝備,2022(7):114-115.
|
3 |
武慧芳,陸立國,鮑子云,等.寧夏測控一體化閘門應用技術標準研究[J].人民黃河,2022,44(1):116-119+123.
|
4 |
戴林軍,郝曉偉,陳勝.一體化泵閘技術在杭嘉湖圩區中的應用研究[J].浙江水利科技,2022,50(4):94-96+102.
|
5 |
鐘興,夏雪蓮.雙向一體化閘門泵的設計與應用[J].陜西水利,2022(1):152-155.
|
6 |
陳偉. 一體化泵閘水力優化數值模擬研究[D]. 江蘇揚州:揚州大學,2021.
|
7 |
李明玉.一體化泵閘的設計及技術要點分析[J].機電信息,2020(29):126-127.
|
8 |
侍賢瑞,嚴根華,董家,等.立式一體化泵閘安全性研究及結構優化[J].振動·測試與診斷,2021,41(1):176-181+207.
|
9 |
宋建大.一體化泵閘在福州內河水系治理中的應用[J].福建建筑,2018(7):140-142.
|
10 |
溫漢昌.模型試驗對水利工程泵閘結構的影響與改進優化[J].內蒙古水利,2021(10):41-42.
|
11 |
付本國,張穎軍.船舶消防疏水一體化泵組設計及試驗研究[J].機電工程技術,2020,49(12):111-113+137.
|
12 |
陸宇杰.城市泵閘建設管理與河道水環境改善分析[J].工程建設與設計,2021(22):89-91.
|